
Library Hours Monday, Tuesday, Thursday: am - pm Wednesday: am - pm Friday: am - pm Nov 21, · Process discussion essay. Ratings. 80 % (90) Process discussion essay @ existentialism in waiting for godot essay; What is digital revolution essay Nov 23, · Travelling plan essay
Greek Achievements
Department of Mathematics Education J. Wilson, essay to, EMT The Pythagorean Theorem was essay to of the earliest theorems known to ancient civilizations.
This famous theorem is named for the Greek mathematician and philosopher, Pythagoras. Pythagoras founded the Pythagorean School of Mathematics in Cortona, a Greek seaport in Southern Italy. He is credited with many contributions to mathematics although some essay to them may have actually been the work of his students.
The Pythagorean Theorem is Pythagoras' most famous mathematical contribution. According to legend, essay to, Pythagoras was so happy when he discovered the theorem that he offered a sacrifice of oxen. The later discovery that the square root of 2 is irrational and therefore, cannot be expressed as a ratio of two integers, greatly troubled Pythagoras and his followers. They were devout in their belief that any two lengths were integral multiples of some unit length.
Many attempts were made to suppress the knowledge that the square root essay to 2 is irrational. It is even said that the man who divulged the secret was drowned at sea.
The Pythagorean Theorem is a statement about triangles containing a right angle. The Pythagorean Theorem states that: "The area of the square built upon the hypotenuse of a right triangle is equal to the sum of the essay to of the squares upon the remaining sides.
Figure 1. According to the Pythagorean Theorem, the sum of the areas essay to the two red squares, squares A and B, is equal to the area of the blue square, square C. for a right triangle with sides of lengths a, essay to, b, and c, where c is the length of the hypotenuse.
Although Pythagoras is credited with the famous theorem, it is likely that the Babylonians knew the result for certain specific triangles at least a millennium earlier than Pythagoras. It is not known essay to the Greeks originally demonstrated the proof of the Pythagorean Theorem. Therefore, the square on c is equal to the sum of the squares on a and b.
Burton There are many other proofs of the Pythagorean Theorem. One came from the contemporary Chinese civilization found in the oldest extant Chinese text containing formal mathematical theories, the Arithmetic Classic of the Gnoman and the Circular Paths of Heaven.
The proof of the Pythagorean Theorem that was inspired by a figure in this book was included in the book Vijaganita, Root Calculationsby the Hindu mathematician Bhaskara. Bhaskara's only explanation of his proof was, essay to, simply, "Behold", essay to. These proofs and the geometrical discovery surrounding the Pythagorean Theorem led to one of the earliest problems in the theory of numbers known as the Pythgorean problem. Find all right triangles whose sides are of integral length, thus finding all solutions in the positive integers of the Pythagorean equation:.
The formula that will generate all Pythagorean triples first appeared in Book Essay to of Euclid's Elements :. In his book Arithmeticaessay to, Diophantus confirmed that he could get right triangles using this formula although he arrived at it under a different line of reasoning. The Pythagorean Theorem can be introduced to students during the middle school years. This theorem becomes increasingly important during the high school years.
It is not enough to merely state the algebraic formula for the Pythagorean Theorem. Students need to see the geometric connections as well. The teaching and learning of the Pythagorean Theorem can be enriched and enhanced through the use of dot paper, geoboards, paper folding, and computer technology, as well as many other instructional materials.
Through the use of manipulatives and essay to educational resources, the Pythagorean Theorem can mean much more to students than just. and plugging numbers into the formula. The following is a variety of proofs of the Pythagorean Essay to including one by Euclid. These proofs, along with essay to and technology, essay to, can greatly improve students' understanding of the Pythagorean Theorem, essay to.
The following is a summation of the proof by Euclid, one of the most famous mathematicians. This proof can be found in Book I of Euclid's Elements. Proposition: In right-angled triangles the square on the hypotenuse is equal to the sum of the squares on the legs. Figure 2. Euclid began with the Pythagorean configuration shown above in Figure 2, essay to. Then, he constructed a perpendicular line from C to the segment DJ on the square on the hypotenuse.
The points H and G are the intersections of this perpendicular with the sides of the square on the hypotenuse. It lies along the altitude to the right triangle ABC. See Figure 3, essay to. Figure 3. Next, Euclid showed that the area of rectangle HBDG is equal to the area of square on BC and that the are of the rectangle HAJG is equal to the area of the square on AC.
He proved these equalities using the concept of similarity, essay to. Triangles ABC, AHC, and CHB are similar. The similarity of triangles ABC and AHC means. or, as to be proved, the area of the rectangle HAJG is the same as the areaof the square on side AC.
In the same way, triangles ABC and CHG are similar. Since the sum of the areas of the two rectangles is the area of the square on the hypotenuse, this completes the proof. Euclid was anxious to place this result in his work as soon as possible. However, since his work on similarity was not to be until Books V and VI, it was necessary for him to come up with another way to prove the Pythagorean Theorem, essay to.
Thus, he used the result that parallelograms are double the triangles with the same base and between the same parallels. Draw CJ and BE. The area of the rectangle AHGJ is double the area of triangle JAC, and the area of square ACLE is double triangle BAE. The two triangles are congruent by SAS. The same result follows in a similar manner for the other rectangle and square, essay to. Katz, Click here for a GSP animation to illustrate this proof.
The next three proofs are more easily seen proofs of the Pythagorean Theorem and would be ideal for high school mathematics students.
In fact, these are proofs that students could be able to construct themselves at some point. The first proof begins with a rectangle divided up into three triangles, each of which contains a right angle.
This proof can be seen through the use of computer technology, or with something as simple as a 3x5 index card cut up into right triangles. Figure 4 Figure 5. It can be seen that triangles 2 in green and 1 in redwill completely overlap triangle 3 in blue. Now, we can give a proof of the Pythagorean Theorem using these same triangles. Proof: I. Essay to triangles 1 and 3.
Figure 6. Angles E and D, respectively, are the right angles in these triangles. By comparing their similarities, we have. Figure 7. Figure 8. We have proved the Pythagorean Theorem, essay to. The next proof is another proof of the Pythagorean Theorem that begins with a rectangle. Figure 9. By the AA similarity theorem, essay to EBF is similar to triangle CAB.
Now, let k be the similarity ratio between triangles EBF and CAB. Figure Thus, triangle EBF has sides with lengths ka, kb, essay to, and kc, essay to. By solving for k, we have.
and we have completed the proof. The next proof of the Pythagorean Theorem that will be presented is one that begins with a right triangle. In the next figure, triangle ABC is a right triangle. Its right angle is angle C. Triangle 1 Compare triangles 1 and 3 : Triangle 1 green is the right triangle that we began with prior to constructing CD, essay to. Triangle 3 red is one of the two triangles formed by the construction of CD. Figure 13 Triangle 1.
Triangle 3. Compare triangles 1 and 2 : Triangle 1 essay to is the same as above. Triangle 2 blue is the other triangle formed by constructing CD. Its right angle is angle D. Figure 14 Triangle 1, essay to. Triangle 2. The next proof of the Pythagorean Theorem that will be presented is one in which a trapezoid will be used. By the construction that was used to form this trapezoid, all 6 of the triangles contained in this trapezoid are right triangles, essay to.
How to write a good essay
, time: 8:24Argumentative Essay Outline - Google Docs

blogger.com Argumentative Essay Outline\uB(To save a copy for yourself choose “file>download as” or “file>make a copy”. Cheers!) Intro Hook Background information Thesis Develop Your Argument Make a claim 1 Evidence 1a Evidence 1b Evidence 1c Make a claim 2 We use cookies on our website. By continuing to browse our site, you are agreeing to our use of cookies. Find out more about our cookies Hide
No comments:
Post a Comment